Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Human‐induced climate change, land use changes, and urbanization are predicted to dramatically impact landscape hydrology, which can have devastating impacts on aquatic organisms. For amphibians that rely on aquatic environments to breed and develop, it is essential to understand how the larval environment impacts development, condition, and performance later in life. Two important predicted impacts of climate change, urbanization, and land use changes are reduced hydroperiod and variable larval density. Here, we explored how larval density and hydroperiod affect development, morphology, physiology, and immune defenses at metamorphosis and 35 days post‐metamorphosis in the frogRana pipiens. We found that high‐density larval conditions had a large negative impact on development and morphology, which resulted in longer larval periods, reduced likelihood of metamorphosis, smaller size at metamorphosis, shorter femur to body length ratio, and reduced microbiome species evenness compared with animals that developed in low‐density conditions. However, animals from the high‐density treatment experienced compensatory growth post‐metamorphosis, demonstrating accelerated growth in body size and relative femur length compared with animals from the low‐density treatments, despite not “catching‐up” in size. We also observed an increase in relative gut length and relative liver size in animals that had developed in the high‐density treatment than those in the low‐density treatment, as well as higher bacterial killing ability, and greater jump distances relative to their leg length across different temperatures. Finally, metabolic rate was higher overall but especially at higher test temperatures for animals that developed under high‐density conditions, indicating that these animals may expend more energy in response to acute temperature changes. While the effects of climate change have direct negative effects on larval development and metamorphosis, animals can increase growth rate post‐metamorphosis; however, that compensatory growth might come at a cost and reduce their ability to cope with further environmental change such as increased temperatures.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Most hosts contain few parasites, whereas few hosts contain many. This pattern, known as aggregation, is well-documented in macroparasites where parasite intensity distribution among hosts affects host–parasite dynamics. Infection intensity also drives fungal disease dynamics, but we lack a basic understanding of host–fungal aggregation patterns, how they compare with macroparasites and if they reflect biological processes. To begin addressing these gaps, we characterized aggregation of the fungal pathogenBatrachochytrium dendrobatidis(Bd) in amphibian hosts. Utilizing the slope of Taylor’s Power law, we found Bd intensity distributions were more aggregated than many macroparasites, conforming closely to lognormal distributions. We observed that Bd aggregation patterns are strongly correlated with known biological processes operating in amphibian populations, such as epizoological phase (i.e. invasion, post-invasion and enzootic), and intensity-dependent disease mortality. Using intensity-dependent mathematical models, we found evidence of evolution of host resistance based on aggregation shifts in systems persisting with Bd following disease-induced declines. Our results show that Bd aggregation is highly conserved across disparate systems and contains signatures of potential biological processes of amphibian–Bd systems. Our work can inform future modelling approaches and be extended to other fungal pathogens to elucidate host–fungal interactions and unite host–fungal dynamics under a common theoretical framework.more » « lessFree, publicly-accessible full text available March 1, 2026
An official website of the United States government
